An Application of Semigroup Theory to a Fragmentation Equation
نویسندگان
چکیده
منابع مشابه
Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation
In this paper we give an elementary proof of the unique, global-in-time solvability of the coagulation-(multiple) fragmentation equation with polynomially bounded fragmentation and particle production rates and a bounded coagulation rate. The proof relies on a new result concerning domain invariance for the fragmentation semigroup which is based on a simple monotonicity argument.
متن کاملOn self-similarity and stationary problem for fragmentation and coagulation models
We prove the existence of a stationary solution of any given mass to the coagulationfragmentation equation without assuming a detailed balance condition, but assuming instead that aggregation dominates fragmentation for small particles while fragmentation predominates for large particles. We also show the existence of a self similar solution of any given mass to the coagulation equation and to ...
متن کاملExtensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملOn the Superstability and Stability of the Pexiderized Exponential Equation
The main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe Pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $S$ to an arbitrary unitary complex Banachalgebra and also $psi: S^{2}rightarrow [0,infty)$ is afunction. Fur...
متن کاملWeak Kam Theory for General Hamilton-jacobi Equations I: the Solution Semigroup under Proper Conditions
We consider the following evolutionary Hamilton-Jacobi equation with initial condition: { ∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0, u(x, 0) = φ(x). Under some assumptions on H(x, u, p) with respect to p and u, we provide a variational principle on the evolutionary Hamilton-Jacobi equation. By introducing an implicitly defined solution semigroup, we extend Fathi’s weak KAM theory to certain more ...
متن کامل